FORCINA HALL - HVAC AND ROOF REPLACEMENT

THE COLLEGE OF NEW JERSEY 2000 PENNINGTON ROAD EWING, NJ 08628

PROJECT SPECIFICATIONS VOLUME 3 OF 3 DIVISION 26

ISSUED FOR CONSTRUCTION

January 15, 2018

Prepared by: DLB Associates Consulting Engineers, P.C. 265 Industrial Way West Eatontown, NJ 07724

(DLB # 47210)

TABLE OF CONTENTS

SECTION DESCRIPTION

DIVISION 26 - ELECTRICAL

260500	GENERAL REQUIREMENTS FOR ELECTRICAL WORK
260519	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260523	CONTROL-VOLTAGE ELECTRICAL POWER CABLES
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260544	SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
262726	WIRING DEVICES
262813	FUSES
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKER
262913	ENCLOSED CONTROLLERS
262923	VARIABLE FREQUENCY MOTOR CONTROLLERS

SECTION 260500 - GENERAL REQUIREMENTS FOR ELECTRICAL WORK

PART 1 - GENERAL

- 1.1 QUALITY ASSURANCE
 - A. All products shall be UL listed and labeled and shall comply with NFPA 70.

1.2 GENERAL

- A. All work shall be conducted in a manner compliant with local, state, and federal regulations and codes.
- 1.3 DEMOLITION AND REMOVALS
 - A. Disconnect, remove and / or relocate existing material, equipment and other work as noted or required for proper installation of new work.
 - B. Except where existing wiring is indicated to be re-used, any item indicated for removal shall be removed, inclusive of any raceway, boxes, wiring, etc., back to its originating source.
 - C. All existing material, equipment and construction debris to be removed under this contract shall become the property of the Contractor. Removed equipment shall be properly disposed of by the Contractor.
 - D. Connections to existing work: Install new work and connect to existing work with minimum interference to existing facilities.
 - E. Maintain continuous operation of existing facilities as required with necessary temporary connections between new and existing work. Connect new work to existing work in a neat and workmanlike manner. Restore existing disturbed work to original condition, including maintaining wiring continuity as required.

1.4 OPERATIONAL TESTING

- A. Perform operational testing of all new equipment until equipment runs trouble-free.
- GENERAL REQUIREMENTS FOR ELECTRICAL WORK

- B. Make final connections and perform startup of equipment for complete and operational systems upon completion.
- 1.5 CONSTRUCTION SEQUENCE, SCHEDULE, AND LIMITATIONS ON DOWNTIME
 - A. Contractor shall develop and submit a detailed construction sequence and schedule for the work.
 - B. All shutdown periods and temporary power facilities shall be described in detail.
 - C. Work will be conducted in a live working environment. Provide two week look ahead schedule to Owner throughout the project. Coordinate and obtain approval from Owner for any work that will affect live portions of the working environment prior to starting work.
 - D. Notify Owner 5 days in advance of any proposed shutdowns. Coordinate details of proposed shutdowns with Owner.
 - 1. Owner shall grant permission for shutdowns at its own discretion.
 - 2. Owner may delay or postpone scheduled shutdowns at any time as may be required to maintain operations.
 - E. Furnish floor wide fire watch during any fire alarm, or fire protection (sprinkler service) interruptions.

1.6 TEMPORARY POWER

A. Contractor shall make all arrangements and provide all equipment necessary to provide temporary power as required to complete the work.

1.7 CONFLICTS AND PROBLEMS

A. The Engineer and Owner shall be notified immediately upon discovery of a problem or conflict. Contractor shall promptly identify one or more proposed solutions but shall not proceed until so authorized.

1.8 COORDINATION

- A. Coordinate the location and orientations of all equipment.
- B. Contractor shall thoroughly familiarize himself and coordinate with existing conditions.

1.9 SUBMITTALS

- A. Submittals (shop drawings) shall be provided for each piece of purchased equipment. Ensure thoroughness and accuracy of the submittals. The Contractor shall provide a stamp on the shop drawings stating that they conform to the drawings and specifications.
 - 1. Long lead items shall be ordered promptly to ensure timely deliveries.

1.10 RECORD DRAWINGS

- A. Prepare a complete set of Record Drawings of all systems including mechanical, electrical and control diagrams.
- B. Record drawings shall clearly indicate the installed condition of the work including equipment locations and exact routing of all wiring, piping, and ductwork.
- C. Provide updated panel schedules for all panelboards.
- D. Record drawings shall include at a minimum 3 sets of printed drawings as well as electronic files.
- E. Electronic drawing files shall be submitted in AutoCAD. Other electronic files shall be MS Word or Excel when possible.

1.11 INSPECTIONS AND PERMITS

A. Contractor shall arrange and pay for all permits, certificates, inspections, etc. And pay all fees levied by state, local and municipal authorities having jurisdiction over work done under this contract.

1.12 INSTALLATION

- A. Drawings are diagrammatic and indicate general arrangement of systems and work. Drawings do not necessarily indicate the actual location of equipment, or routing including all offsets, drops, rises, and runs for conduit, piping, ductwork, etc.
- B. "Furnish and install" or "provide" means to supply, erect, install and connect up to, complete for readiness for regular operation, the particular work referred to.
- C. The Contractor shall furnish and install all supports, hangers, boxes, conduit, wiring and panels as required, and shall perform demolition and modification work as required, to make a complete and operable system.
- D. Proper fire protection measures, satisfactory to the local fire department, shall be taken when welding or cutting with torches or electric arc. Contractor to provide open flame permit if required.
- E. All work shall be done in a neat workmanlike manner, left clean and free from defects, and completely operable.
- F. Install work so as to be readily accessible for operation, maintenance and repair.

1.13 DELIVERY AND HANDLING

- A. Investigate each space through which equipment must be moved. Where necessary, equipment shall be shipped from manufacturer in sections of size suitable for moving through available restrictive spaces. Ascertain from owner at what times of day equipment may be moved through all areas.
- B. Protect all equipment from the weather and damage at all times during shipment, storage and construction.

1.14 CUTTING AND PATCHING

A. Contractor shall perform all cutting and patching as required for his work. Do not cut building structural elements. Patch and paint to match adjacent surfaces. B. All holes in masonry floors and walls shall be core drilled. Any core drilling shall be coordinated with the Owner.

1.15 PENETRATIONS

A. All penetrations of floors (whether or not fire resistance rated) and all penetrations of fire rated walls and floors shall be provided with a through penetration protection system (firestopping). Each through-penetration protection system shall be tested in accordance with ASTM E814 and be listed for the type of floor or wall assembly penetrated and the type of protection system required.

1.16 WARRANTY

A. Basic warranty period shall be one year and shall start from the date of successful commissioning and start-up. A special warranty may also be required for certain equipment, as required in the individual specification sections for the equipment.

1.17 OPERATION AND MAINTENANCE MANUALS

A. At the completion of the project, provide the Owner with copies of installation, operation and maintenance procedures along with final approved shop drawings for each piece of equipment.

1.18 OPERATOR TRAINING

- A. Provide comprehensive training for Owner's personnel covering the operation and maintenance of each piece of equipment provided on the project.
- B. Training shall be conducted at the Owner's facility by a representative of the equipment manufacturer.
- C. Submit a list of training topics and training schedule.
- D. Document each training session and include training documentation in the Operation and Maintenance Manual.

END OF SECTION 260500

SECTION 260519 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Control and signal wire.
 - 3. Connectors, splices, and terminations rated 600 V and less.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - Alcan Products Corporation; Alcan Cable Division. 1.
 - 2. Alpha Wire.
 - 3. Belden Inc.
 - 4. Encore Wire Corporation.
 - 5. General Cable Technologies Corporation.
 - 6. Southwire Incorporated.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: 600V, Comply with NEMA WC 70/ICEA S-95-658 for Type THHN-2-THWN-2 and Type XHHW-2.

2.2 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Gardner Bender.
 - 3. Hubbell Power Systems, Inc.
 - 4. Ideal Industries, Inc.
 - 5. Ilsco; a branch of Bardes Corporation.
 - 6. NSi Industries LLC.
 - 7. O-Z/Gedney; a brand of the EGS Electrical Group.
 - 8. 3M; Electrical Markets Division.
 - 9. Tyco Electronics.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

PART 3 - EXECUTION

- 3.1 CONDUCTOR MATERIAL APPLICATIONS
 - A. Feeders: Copper. All wire shall be stranded.
 - B. Branch Circuits: Copper. Stranded for #8 and larger. Solid for #10 and smaller.
 - C. Control Wiring: Copper. All wire shall be stranded.

- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Type XHHW-2, single conductors in raceway
 - B. Exposed Feeders: Type XHHW-2, single conductors in raceway.
 - C. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
 - D. Exposed Branch Circuits, Type XHHW-2, single conductors in raceway.
 - E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHW-2, single conductors in raceway.
 - F. Control Wiring: Type XHHW-2, single conductors in raceway, #14 AWG.
 - G. Signal Wiring (4-20mA): Shielded twisted pair, #18 AWG tinned copper, single pair, pair colors shall be black and red.
- 3.3 INSTALLATION OF CONDUCTORS AND CABLES
 - A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
 - B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
 - C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
 - D. Use pulling means; including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - After installing conductors and cables and before electrical circuitry has been energized, test all conductors for compliance with requirements.
 - Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES 260519-4

conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

- a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- b. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.
- D. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- E. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 260519

SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Multimode optical-fiber cabling.
 - 2. UTP cabling.
 - 3. RS-485 cabling.
 - 4. Low-voltage control cabling.
 - 5. Control-circuit conductors.
 - 6. Identification products.
- 1.3 DEFINITIONS
 - A. EMI: Electromagnetic interference.
 - B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
 - C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.
 - D. UTP: Unshielded twisted pair.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

- 1.5 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.
 - B. Source quality-control reports.
 - C. Field quality-control reports.
- 1.6 QUALITY ASSURANCE
 - A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- PART 2 PRODUCTS
- 2.1 SYSTEM DESCRIPTION
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2.2 PERFORMANCE REQUIREMENTS
 - A. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262 by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 - 1. Flame Travel Distance: 60 inches (1520 mm) or less.
 - 2. Peak Optical Smoke Density: 0.5 or less.
 - 3. Average Optical Smoke Density: 0.15 or less.
 - B. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
 - C. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

CONTROL VOLTAGE ELECTRICAL CABLES

2.3 BACKBOARDS

- A. Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Section 061000 "Rough Carpentry."
- B. Painting: Paint plywood on all sides and edges with flat black latex paint. Comply with requirements in Section 099123 "Interior Painting."

2.4 OPTICAL-FIBER CABLE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. Belden Inc.
 - 2. Corning Incorporated.
 - 3. General Cable Technologies Corporation.
 - 4. Mohawk; a division of Belden Inc.
 - 5. Nexans; Berk-Tek Products.
 - 6. <u>Siemon Company (The)</u>.
 - 7. <u>Superior Essex Inc.</u>
 - 8. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. Description: Multimode, 62.5/125-micrometer, 6-fiber, tightbuffer, optical-fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA-568-C.3 for performance specifications.
 - 3. Comply with TIA-492AAAB-A for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. Plenum Rated, Nonconductive: Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit.
 - c. Riser Rated, Nonconductive: Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit

installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."

- d. General Purpose, Nonconductive: Type OFN, Type OFNG, Type OFNP, or Type OFNR in metallic conduit.
- e. Plenum Rated, Conductive: Type OFC, Type OFN, Type OFCG, Type OFNG, Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
- f. Riser Rated, Conductive: Type OFC, Type OFN, Type OFCG, Type OFNG, Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit.
- g. General Purpose, Conductive: Type OFC, Type OFN, Type OFCG, Type OFNG, Type OFCP, Type OFNP, Type OFCR, or Type OFNR in metallic conduit.
- 5. Maximum Attenuation: 3.5 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
- 6. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHzkm at 1300 nm.
- C. Jacket:
 - 1. Jacket Color: Orange for 62.5/125-micrometer cable.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 - Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).
- 2.5 OPTICAL-FIBER CABLE HARDWARE
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. American Technology Systems Industries, Inc.
 - 2. Belden Inc.
 - 3. Corning Incorporated.
 - 4. Dynacom Inc.
 - 5. Hubbell Incorporated.

- 6. Panduit Corp.
- 7. Siemon Company (The).
- B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.
 - Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- C. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900mm) lengths.
- D. Cable Connecting Hardware:
 - Comply with Optical-Fiber Connector Intermateability Standards (FOCIS) specifications of TIA-604-2-B, TIA-604-3-B, and TIA/EIA-604-12. Comply with TIA-568-C.3.
 - 2. Quick-connect, simplex and duplex, Type SC connectors. Insertion loss of not more than 0.75 dB.
 - 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.
- 2.6 UTP CABLE
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. Alpha Wire Company; a division of Belden Inc.
 - 2. Belden Inc.
 - 3. <u>CommScope</u>, Inc.
 - 4. Nexans; Berk-Tek Products.
 - 5. <u>Siemon Company (The)</u>.
 - 6. <u>Superior Essex Inc</u>.
 - 7. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
 - B. Description: 100-ohm, four-pair UTP, 24-pair UTP, formed into four-pair binder groups with no overall jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties of Category 5e cables.
 - 2. Comply with ICEA S-102-700 for mechanical properties of Category 6 cables.

- 3. Comply with TIA-568-C.1 for performance specifications.
- 4. Comply with TIA-568-C.2, Category 6.
- 5. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, Plenum Rated: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 - b. Communications, Riser Rated: Type CMP or Type CMR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 - c. Communications, General Purpose: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
 - d. Communications, Limited Purpose: Type CMX.

2.7 UTP CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. American Technology Systems Industries, Inc.
 - 2. Belden Inc.
 - 3. Hubbell Incorporated.
 - 4. Leviton Commercial Networks Division.
 - 5. Panduit Corp.
 - 6. Siemon Company (The).
 - 7. Tyco Electronics/AMP Netconnect; Tyco International Ltd.
- B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-C.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
- C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus

25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

- D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 - Number of Jacks per Field: One for each four-pair conductor group of indicated cables, plus spares and blank positions adequate to suit specified expansion criteria.
- F. Jacks and Jack Assemblies: 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA/EIA-568-C.1.
- G. Patch Cords: Factory-made, four-pair cables in 36-inch (900mm) lengths; terminated with eight-position modular plug at each end.
 - Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
 - 2. Patch cords shall have color-coded boots for circuit identification.
- H. Faceplates:
 - 1. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices."
 - 2. Metal Faceplate: Stainless steel, complying with requirements in Section 262726 "Wiring Devices."
 - 3. For use with snap-in jacks accommodating any combination of UTP, optical-fiber, and coaxial work area cords.
 - a. Flush-mounted jacks, positioning the cord at a 45degree angle.
- I. Legend:

- 1. Factory labeled by silk-screening or engraving for stainless steel.
- 2. Machine printed, in the field, using adhesive-tape label.
- 3. Snap-in, clear-label covers and machine-printed paper inserts.
- 2.8 TWIN-AXIAL DATA HIGHWAY CABLE
 - A. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.
- 2.9 RS-485 CABLE
 - A. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, one pair, No. 22 AWG, stranded (7x30) tinnedcopper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Fluorinated ethylene propylene jacket.
 - 5. Flame Resistance: NFPA 262.

2.10 LOW-VOLTAGE CONTROL CABLE

- A. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 - 1. One -pair, twisted, No. 16 AWG, stranded (19x29) tinnedcopper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.

- 4. PVC jacket.
- 5. Flame Resistance: Comply with NFPA 262.
- 2.11 CONTROL-CIRCUIT CONDUCTORS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. Encore Wire Corporation.
 - 2. General Cable Technologies Corporation.
 - 3. Southwire Company.
 - B. Class 1 Control Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.
 - C. Class 2 Control Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.
 - D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.
 - E. Class 2 Control Circuits and Class 3 Remote-Control and Signal Circuits That Supply Critical Circuits: Circuit Integrity (CI) cable.
 - 1. Smoke control signaling and control circuits.
- 2.12 SOURCE QUALITY CONTROL
 - A. Testing Agency: Engage a qualified testing agency to evaluate cables.
 - B. Factory test UTP cables according to TIA-568-C.2.
 - C. Factory test optical-fiber cables according to TIA-568-C.3.
 - D. Cable will be considered defective if it does not pass tests and inspections.
 - E. Prepare test and inspection reports.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Test cables on receipt at Project site.
 - Test optical-fiber cable to determine the continuity of the strand end to end. Use optical-fiber flashlight or optical loss test set.
 - 2. Test optical-fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.
- 3.2 INSTALLATION OF RACEWAYS AND BOXES
 - A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.
 - Outlet boxes for optical-fiber cables shall be no smaller than 4 inches (102 mm) square by 2-1/8 inches (53 mm) deep with extension ring sized to bring edge of ring to within 1/8 inch (3.1 mm) of the finished wall surface.
 - 2. Flexible metal conduit shall not be used.
 - B. Comply with TIA-569-B for pull-box sizing and length of conduit and number of bends between pull points.
 - C. Install manufactured conduit sweeps and long-radius elbows if possible.
 - D. Raceway Installation in Equipment Rooms:
 - Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed, or in the corner of the room if multiple sheets of plywood are installed around perimeter walls of the room.
 - 2. Install cable trays to route cables if conduits cannot be located in these positions.

- 3. Secure conduits to backboard if entering the room from overhead.
- 4. Extend conduits 3 inches (75 mm) above finished floor.
- 5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.
- E. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.
- 3.3 INSTALLATION OF CONDUCTORS AND CABLES
 - A. Comply with NECA 1 and NFPA 70.
 - B. General Requirements for Cabling:
 - 1. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems" and Ch. 6, "Optical Fiber Structured Cabling Systems."
 - Terminate all conductors and optical fibers; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 3. Cables may not be spliced.
 - 4. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems" and Ch. 6, "Optical Fiber Structured Cabling Systems." Install lacing bars and distribution spools.
 - 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 7. Cold-Weather Installation: Bring cable to room temperature before dereeling. Do not use heat lamps for heating.

- 8. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems" and Ch. 6, "Optical Fiber Structured Cabling Systems." Monitor cable pull tensions.
- 9. Support: Do not allow cables to lay on removable ceiling tiles.
- 10. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
- C. UTP Cable Installation:
 - 1. Comply with TIA-568-C.2.
 - Install termination hardware as specified in Section 271500 "Communications Horizontal Cabling" unless otherwise indicated.
 - 3. Do not untwist UTP cables more than 1/2 inch (12 mm) at the point of termination to maintain cable geometry.
- D. Installation of Control-Circuit Conductors:
 - Install wiring in raceways. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- E. Optical-Fiber Cable Installation:
 - 1. Comply with TIA-568-C.3.
 - 2. Terminate cable on connecting hardware that is rack or cabinet mounted.
- F. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA-569-B recommendations for separating unshielded copper voice and data communications cable from potential EMI sources including electrical power lines and equipment.
 - 2. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment or Circuit Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - Electrical Equipment or Circuit Rating between 2 and
 5 kVA: A minimum of 6 inches (150 mm).

- c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 12 inches (305 mm).
- Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches (1200 mm).
- 4. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).
- 3.4 REMOVAL OF CONDUCTORS AND CABLES
 - A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified for future use with a tag.
- 3.5 CONTROL-CIRCUIT CONDUCTORS
 - A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits; No 14 AWG.
 - Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.
- 3.6 FIRESTOPPING
 - A. Comply with requirements in Section 078413 "Penetration Firestopping."
 - B. Comply with TIA-569-B, Annex A, "Firestopping."
 - C. Comply with BICSI TDMM, "Firestopping" Chapter.
- 3.7 GROUNDING
 - A. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
 - B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

CONTROL VOLTAGE ELECTRICAL CABLES

3.8 IDENTIFICATION

- A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- B. Identify data and communications system components, wiring, and cabling according to TIA-606-A; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections:
 - Visually inspect UTP and optical-fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not after cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical-Fiber Cable Tests:

- a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.O. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in one direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
 - 2) Attenuation test results for links shall be less than 2.0 dB.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 260523

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. Section includes grounding and bonding systems and equipment.
 - 1. Section includes grounding and bonding systems and equipment
- 1.2 ACTION SUBMITTALS
 - A. Product Data: For each type of product indicated.
- 1.3 INFORMATIONAL SUBMITTALS
 - A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 - 1. Grounding arrangements and connections for separately derived systems and non-separately derived systems.
 - B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.
- PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 1. Burndy; Part of Hubbell Electrical Systems.
- 2. Dossert; AFL Telecommunications LLC.
- 3. ERICO International Corporation.
- 4. Fushi Copperweld Inc.
- 5. Galvan Industries, Inc.; Electrical Products Division, LLC.
- 6. Harger Lightning and Grounding.
- 7. ILSCO.
- 8. O-Z/Gedney; A Brand of the EGS Electrical Group.
- 9. Robbins Lightning, Inc.
- 10. Siemens Power Transmission & Distribution, Inc.

2.2 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Stranded Conductors: ASTM B 8.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: All wire shall be stranded.
- B. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

- A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. When indicated on the drawings, install a main bonding jumper between the neutral and ground buses.
- 3.3 EQUIPMENT GROUNDING
 - A. Install insulated equipment grounding conductors with all feeders and branch circuits.

3.4 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - After installing grounding system but before permanent electrical circuits have been energized, perform grounding system inspection and tests per NETA ATS 2013 section 7.13.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.

1.2 DEFINITIONS

- A. RMC: Rigid metal conduit.
- 1.3 PERFORMANCE REQUIREMENTS
 - A. Design supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
 - B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of five times the applied force.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel slotted support systems.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 - 1. Steel slotted channel systems. Include Product Data for components.
 - 2. Equipment supports.

1.5 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

- 1.6 COORDINATION
 - A. Coordinate size and location of concrete bases. Provide anchor-bolt inserts into bases.
 - B. Coordinate installation of, equipment supports.

PART 2 - PRODUCTS

- 2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS
 - A. Steel Slotted Support Systems: Comply with MFMA-4, factoryfabricated components for field assembly.
 - Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. ERICO International Corporation.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut; Atkore International.
 - g. Wesanco, Inc.
 - 3. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 - 4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 - 5. Channel Dimensions: Selected for applicable load criteria.
 - B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
 - C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, stainless steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti, Inc.
 - 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
 - Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

- Clamps for Attachment to Steel Structural Elements: 4. MSS SP-58, type suitable for attached structural element.
- Through Bolts: 5. Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.
- 2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES
 - A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- PART 3 EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- в. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.
- Spring-steel clamps designed for supporting single conduits С. without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- Comply with NECA 1 and NECA 101 for installation requirements Α. except as specified in this Article.
- Β. Trim threaded rods at hanger supports to the minimum required length.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading Minimum static design load used for strength limits. determination shall be weight of supported components plus 200 lb (90 kg).

- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 CONCRETE BASES

- A. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up fieldpainted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Metal conduits, tubing, and fittings.
 - 2. Metal wireways and auxiliary gutters.
 - 3. Boxes.

1.2 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. EMT: Electrical Metallic Tubing

1.3 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Allied Tube & Conduit.
 - 3. Anamet Electrical, Inc.
 - 4. Electri-Flex Company.
 - 5. O-Z/Gedney.
 - 6. Picoma Industries.
 - 7. Republic Conduit.

- 8. Robroy Industries.
- 9. Southwire Company.
- 10. Thomas & Betts Corporation.
- 11. Western Tube and Conduit Corporation.
- 12. Wheatland Tube Company.
- B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. GRC: Comply with ANSI C80.1 and UL 6.
- D. EMT: Comply with ANSI C80.3 and UL 797
- E. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- F. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
- G. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
- H. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. Mono-Systems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type as indicated on drawings and sized according to NFPA 70.

- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.
- 2.3 BOXES, ENCLOSURES, AND CABINETS
 - A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Adalet.
 - 2. Cooper Technologies Company; Cooper Crouse-Hinds.
 - 3. EGS/Appleton Electric.
 - 4. Erickson Electrical Equipment Company.
 - 5. FSR Inc.
 - 6. Hoffman.
 - 7. Hubbell Incorporated.
 - 8. Kraloy.
 - 9. Milbank Manufacturing Co.
 - 10. Mono-Systems, Inc.
 - 11. O-Z/Gedney.
 - 12. RACO; Hubbell.
 - 13. Robroy Industries.
 - 14. Spring City Electrical Manufacturing Company.
 - 15. Stahlin Non-Metallic Enclosures.
 - 16. Thomas & Betts Corporation.
 - 17. Wiremold / Legrand.
 - B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
 - C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- F. Device Box Dimensions: 4 inches square by 2-1/8 inches deep and 4 inches by 2-1/8 inches by 2-1/8 inches deep as required.
- PART 3 EXECUTION
- 3.1 RACEWAY APPLICATION Refer to drawings for wiring methods.
 - A. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use steel set-screw fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.2 INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation.
- D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- F. Support conduit within 12 inches of enclosures to which attached.
- RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

- G. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- H. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- I. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- J. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- K. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- L. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- M. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- N. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. Install raceway sealing fittings according to NFPA 70.
- O. Mount boxes at heights indicated on Drawings.
- P. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- Q. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

- R. Penetrations:
 - Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
 - 2. Make penetrations perpendicular to surfaces unless otherwise indicated.
 - 3. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
 - 4. Conceal bends for conduit risers emerging above ground.
 - 5. Seal interior of conduits entering the building from underground at first accessible point to prevent entry of moisture and gases.
 - 6. Provide suitable modular seal where conduits penetrate exterior wall below grade.
 - 7. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.
 - 8. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty. Include proposed locations of penetrations and methods for sealing with submittals.
 - 9. Provide metal escutcheon plates for conduit penetrations exposed to public view.
 - 10. Install firestopping to preserve fire resistance rating of partitions and other elements, using UL listed materials and methods.
- 3.3 PROTECTION
 - A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-firerated construction walls and floors.
 - 2. Sleeve-seal systems.
 - 3. Silicone sealants.
- B. Related Requirements:
 - Section 078413 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- PART 2 PRODUCTS
- 2.1 SLEEVES
 - A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.

SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - a. Advance Products & Systems, Inc.
 - b. CALPICO, Inc.
 - c. Metraflex Company (The).
 - d. Pipeline Seal and Insulator, Inc.
 - e. Proco Products, Inc.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Carbon steel.
 - Connecting Bolts and Nuts: Carbon steel, with corrosionresistant coating, of length required to secure pressure plates to sealing elements.

2.3 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutralcuring elastomeric sealants of grade indicated below.
 - Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
 - Sealant shall have VOC content of less than allowed when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.
- PART 3 EXECUTION
- 3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
 - A. Comply with NECA 1.
 - B. Comply with NEMA VE 2 for cable tray and cable penetrations.
 - C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - Seal space outside of sleeves with mortar or grout.
 Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

- E. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch (25-mm) annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- 3.2 SLEEVE-SEAL-SYSTEM INSTALLATION
 - A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
 - B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Identification for raceways.
 - 2. Identification of power and control cables.
 - 3. Identification for conductors.
 - 4. Underground-line warning tape.
 - 5. Warning labels and signs.
 - 6. Instruction signs.
 - 7. Equipment identification labels.
 - 8. Miscellaneous identification products.

1.2 ACTION SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

- A. Comply with ANSI A13.1 and IEEE C2.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.4 COORDINATION

A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.

- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

- 2.1 POWER AND CONTROL RACEWAY IDENTIFICATION MATERIALS
 - A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each raceway size.
 - B. Colors for Raceways Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
 - C. Colors for Raceways Carrying Circuits at More Than 600 V:
 - 1. Black letters on an orange field.
 - 2. Legend: "DANGER CONCEALED HIGH VOLTAGE WIRING."
 - D. Vinyl Labels for Raceways Carrying Circuits at 600 V or Less: Preprinted, flexible label laminated with a clear, weatherand chemical-resistant coating and matching wraparound clear adhesive tape for securing ends of legend label.

2.2 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.
- B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted or Write-on, 3-mil- thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather-

and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.

2.3 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tapes not less than 3 mils thick by 1 to 2 inches wide.

2.4 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
- C. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."

2.5 EQUIPMENT IDENTIFICATION LABELS

A. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.6 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black except where used for color-coding.

- IDENTIFICATION FOR ELECTRICAL SYSTEMS

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Select paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
- PART 3 EXECUTION

3.1 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. Attach plastic raceway and cable labels that are not selfadhesive type with clear vinyl tape with adhesive appropriate to the location and substrate.
- G. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Painted Identification: Comply with requirements in painting Sections for surface preparation and paint application.

3.2 IDENTIFICATION SCHEDULE

- A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. Control.
 - 2. Power.
 - 3. Communications.
- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors pull and junction boxes, use color-coding conductor tape to identify the phase.
 - Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder and branch-circuit conductors.
 - a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
 - b. Colors for 208/120-V Power Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - d. Colors for 120 VAC Control Wire:
 - 1) 120 VAC Control Power (Hot): Black
 - 2) 120 VAC Control Power (Neutral): White
 - 3) 120 VAC Control Circuit: Red
 - e. Colors for 24 VDC Control Circuits:
 - 1) 24 VDC (+): Blue
 - 2) 24 VDC (common): Blue with white stripe

- f. Control wires energized by voltage source external to enclosure: Yellow
- g. Colors for 4-20mA Signal Wire:
 - 1) 4-20mA (+): Red
 - 2) 4-20mA (-): Black
- h. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- C. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.
- D. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes use, self-laminating polyester labels with the conductor or cable designation, origin, and destination.
- E. Control-Circuit Conductor Termination Identification: For identification at terminations provide self-adhesive, self-laminating polyester labels with the conductor designation.
- F. Warning Labels for Indoor, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 - a. Controls with external control power connections.
- G. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system.

Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

- 1. Labeling Instructions:
 - a. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2inch- high letters on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high.
 - b. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - c. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
- 2. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Transformers: Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - d. Motor-control centers.
 - e. Enclosed switches.
 - f. Enclosed circuit breakers.
 - g. Enclosed controllers.
 - h. Push-button stations.
 - i. Remote-controlled control devices.
 - j. Monitoring and control equipment.

SECTION 262726 - WIRING DEVICES

- PART 1 GENERAL
- 1.1 SUMMARY
 - A. Section Includes:
 - 1. Toggle switches.

1.2 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branchcircuit conductor.
- D. RFI: Radio-frequency interference.
- E. TVSS: Transient voltage surge suppressor.
- F. UTP: Unshielded twisted pair.

1.3 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.
- PART 2 PRODUCTS
- 2.1 MANUFACTURERS
 - A. Basis-of-Design Products: Where products are indicated by manufacturer and catalog number provide those products subject to compliance with requirements or comparable products by one of the manufacturers indicated herein in accordance with specification requirements.
 - B. <u>Manufacturers</u>' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. <u>Cooper Wiring Devices; Division of Cooper Industries,</u> Inc. (Cooper).
 - 2. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 3. Leviton Mfg. Company Inc. (Leviton).
 - 4. Pass & Seymour/Legrand (Pass & Seymour).
 - C. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.
- C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.

2. Devices shall comply with the requirements in this Section.

2.3 TOGGLE SWITCHES

- A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
- B. Switches, 120/277 V, 20 A:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - 1) Single Pole:
 - a) Cooper; AH1221.
 - b) Hubbell; HBL1221.
 - c) Leviton; 1221-2.
 - d) Pass & Seymour; CSB20AC1.
 - 2) Other "Approved" manufacturer in accordance with Specification Requirements.
 - 3) Two Pole:
 - a) Cooper; AH1222.
 - b) Hubbell; HBL1222.
 - c) Leviton; 1222-2.
 - d) Pass & Seymour; CSB20AC2.
 - 4) Other "Approved" manufacturer in accordance with Specification Requirements.

2.4 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Ivory unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
 - 3. TVSS Devices: Blue.
- B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:
 - Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 - Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- D. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

3.2 IDENTIFICATION

- A. Comply with Section "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Comply with Section "Identification".

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Check and verify that all wiring devices and outlet boxes are securely fastened.

- 2. Inspect all installed wiring devices for cracks and proper wire terminations.
- 3. Test all installed switches for proper operation.
- 4. Test all installed receptacles for acceptable line-toline, line-to-neutral, and line-to-ground voltage. Acceptable range is nominal system voltage plus or minus 5 percent.
- B. Wiring device will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switches, panelboards, and enclosed controllers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 3. Current-limitation curves for fuses with current-limiting characteristics.
 - 4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.

5. Coordination charts and tables and related data.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 - 4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.

1.6 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F (5 deg C) or more than 100 deg F (38 deg C), apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.8 COORDINATION

- A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.
- PART 2 PRODUCTS
- 2.1 MANUFACTURERS
 - A. <u>Manufacturers</u>: Subject to compliance with requirements, provide products by one of the following or equivalent:
 - 1. Cooper Bussmann, Inc.
 - 2. <u>Edison Fuse</u>, Inc.
 - 3. <u>Ferraz Shawmut, Inc</u>.
 - 4. Littelfuse, Inc.
- 2.2 CARTRIDGE FUSES
 - A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
- PART 3 EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Feeders: Class RK1, time delay.
 - 2. Motor Branch Circuits: Class RK1, time delay.
 - 3. Other Branch Circuits: Class J, fast acting.
 - 4. Control Circuits: Class CC, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

- PART 1 GENERAL
- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.
- 1.3 DEFINITIONS
 - A. NC: Normally closed.
 - B. NO: Normally open.
 - C. SPDT: Single pole, double throw.
- 1.4 PERFORMANCE REQUIREMENTS
 - A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

- Enclosure types and details for types other than 1. NEMA 250, Type 1.
- 2. Current and voltage ratings.
- 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
- 4. Include evidence of NRTL listing for series rating of installed devices.
- 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - Wiring Diagrams: For power, signal, and control wiring. 1.
- 1.6 INFORMATIONAL SUBMITTALS
 - A. Field quality-control reports.
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - Results of failed tests and corrective action taken to 3. achieve test results that comply with requirements.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - Manufacturer's written instructions for testing 1. and adjusting enclosed switches and circuit breakers.

2. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.9 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NFPA 70.

1.10 PROJECT CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).
 - 2. Altitude: Not exceeding 6600 feet (2010 m).

- B. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than five days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.
 - 4. Comply with NFPA 70E.

1.11 COORDINATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- PART 2 PRODUCTS
- 2.1 FUSIBLE SWITCHES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. <u>General Electric Company; GE Consumer & Industrial -</u> Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
 - B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
 - C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.

- Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 2.2 NONFUSIBLE SWITCHES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. <u>General Electric Company; GE Consumer & Industrial -</u> Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
 - B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
 - C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 2.3 MOLDED-CASE CIRCUIT BREAKERS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. <u>General Electric Company; GE Consumer & Industrial -</u> Electrical Distribution.

- 3. Siemens Energy & Automation, Inc.
- 4. Square D; a brand of Schneider Electric.
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- D. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.
- E. Ground-Fault, Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
- F. Ground-Fault, Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).
- G. Features and Accessories:
 - 1. Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 - 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 - 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.

2.4 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

- 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
- 2. Outdoor Locations: NEMA 250, Type 3R.
- 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
- 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Install fuses in fusible devices.
- D. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminatedplastic nameplate.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factoryauthorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Acceptance Testing Preparation:
 - Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 3. Perform the following infrared scan tests and inspections and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- 3.5 ADJUSTING
 - A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 26 2913 - ENCLOSED CONTROLLERS

- PART 1 GENERAL
- 1.1 SECTION INCLUDES
 - A. Enclosed NEMA motor controllers for low-voltage (600 V and less) applications:
 - 1. Magnetic motor starters.
 - B. Overcurrent protective devices for motor controllers, including overload relays.
 - C. Motor control accessories:
 - 1. Auxiliary contacts.
 - 2. Pilot devices.
 - 3. Control and timing relays.
 - 4. Control power transformers.
 - 5. Control terminal blocks.

1.2 RELATED REQUIREMENTS

- A. Section 26 0526 Grounding and Bonding for Electrical Systems.
- B. Section 26 0529 Hangers and Supports for Electrical Systems.
- C. Section 26 0553 Identification for Electrical Systems: Identification products and requirements.

1.3 REFERENCE STANDARDS

- A. NECA 1 Standard for Good Workmanship in Electrical Construction; 2015.
- B. NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.

- C. NEMA ICS 2 Industrial Control and Systems Controllers, Contactors and Overload Relays Rated 600 Volts; 2000 (R2005), with errata, 2008.
- D. NEMA ICS 5 Industrial Control and Systems: Control Circuit and Pilot Devices; 2000 (R2010).
- E. NEMA ICS 6 Industrial Control and Systems: Enclosures; 1993 (R2011).
- F. NETA ATS Acceptance Testing Specifications for Electrical Power Equipment and Systems; 2013.
- G. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
- H. UL 489 Molded-Case Circuit Breakers, Molded-Case Switches and Circuit Breaker Enclosures; Current Edition, Including All Revisions.
- I. UL 60947-1 Low-Voltage Switchgear and Controlgear Part 1: General Rules; Current Edition, Including All Revisions.
- J. UL 60947-4-1 Low-Voltage Switchgear and Controlgear -Part 4-1: Contactors and Motor-starters -Electromechanical Contactors and Motor-starters; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances required by NFPA 70.
 - 2. Coordinate the work to provide motor controllers and associated overload relays suitable for use with the actual motors to be installed.
 - 3. Coordinate the work to provide motor controllers and associated wiring suitable for interface with control devices to be installed.

- 4. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
- 5. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
- 6. Notify Engineer of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

1.5 SUBMITTALS

- A. A. Product Data: Provide manufacturer's standard catalog pages and data sheets for motor controllers, enclosures, overcurrent protective devices, and other installed components and accessories.
 - 1. Include characteristic trip curves for each type and rating of overcurrent protective device upon request.
- B. Shop Drawings: Indicate dimensions, voltage, controller sizes, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.
 - 1. Include dimensioned plan and elevation views of enclosed motor controllers and adjacent equipment with all required clearances indicated.
 - 2. Include wiring diagrams showing all factory and field connections.
 - 3. Clearly indicate whether proposed short circuit current ratings are fully rated or, where acceptable, series rated systems.
- C. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.
- D. Field Quality Control Test Reports.
- E. Project Record Documents: Record actual installed locations of motor controllers and final equipment settings.

- 1. Include nameplate data of actual installed motors and associated overload relay selections and settings.
- F. Maintenance Data: Include information on replacement parts and recommended maintenance procedures and intervals.
- G. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - Indicating Lights and Fuses: Two of each different type.
- 1.6 QUALITY ASSURANCE
 - A. Conform to requirements of NFPA 70.
 - B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.
 - C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum 10 years documented experience.
 - D. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
 - B. Handle carefully in accordance with manufacturer's written instructions to avoid damage to internal components, enclosure, and finish.

1.8 FIELD CONDITIONS

A. Maintain field conditions within required service conditions during and after installation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis of Design: Schneider Electric; Square D Products: www.schneider-electric.us. Or approved equivalent by Eaton, GE, or Allen Bradley.
- B. Source Limitations: Furnish enclosed motor controllers and associated components produced by a single manufacturer and obtained from a single supplier.

2.2 ENCLOSED MOTOR CONTROLLERS

- A. Provide enclosed motor controller assemblies consisting of all required components, control power transformers, instrumentation and control wiring, accessories, etc. as necessary for a complete operating system.
- B. Provide products listed, classified, and labeled as suitable for the purpose intended.
- C. Description: Enclosed motor controllers complying with NEMA ICS 2, and listed and labeled as complying with UL 60947-1 and UL 60947-4-1; ratings, configurations and features as indicated on the drawings.
- D. Service Conditions:
 - 1. Provide motor controllers and associated components suitable for operation under the following service conditions without derating:
 - a. Altitude:
 - 1) Class 1 Km Equipment (devices utilizing power semiconductors, e.g. variable frequency controllers): Less than 3,300 feet (1,000 m).
 - 2) Class 2 Km Equipment (electromagnetic and manual devices): Less than 6,600 feet (2,000 m).
 - b. Ambient Temperature: Between 32 degrees F (0 degrees C) and 104 degrees F (40 degrees C).

- 2. Provide motor controllers and associated components suitable for operation at indicated ratings under the service conditions at the installed location.
- E. Short Circuit Current Rating:
 - 1. Provide motor controllers with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.
 - 2. Listed series ratings are not acceptable.
- F. Conductor Terminations: Suitable for use with the conductors to be installed.
- G. Enclosures:
 - 1. Comply with NEMA ICS 6.
 - 2. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 - a. Indoor Clean, Dry Locations: Type 1 or Type 12.
 - 3. Finish: Manufacturer's standard unless otherwise indicated.
- H. Magnetic Motor Starters: Combination type unless otherwise indicated.
 - Combination Magnetic Motor Starters: NEMA ICS 2, Class A combination motor controllers with magnetic contactor(s), externally operable disconnect and overload relay(s).
 - 2. Configuration: Full-voltage non-reversing unless otherwise indicated.
 - 3. Disconnects: Circuit breaker type.
 - a. Circuit Breakers: Thermal magnetic unless otherwise indicated or required.
 - b. Provide externally operable handle with means for locking in the OFF position. Provide safety interlock to prevent opening the cover with the disconnect in the ON position with capability of overriding interlock for testing purposes.
 - c. Provide auxiliary interlock for disconnection of external control power sources where applicable.

- 4. Overload Relays: Bimetallic thermal type unless otherwise indicated.
- 5. Pilot Devices Required:
 - a. Furnish local pilot devices for each unit as specified below unless otherwise indicated on drawings.
 - b. Single-Speed, Non-Reversing Starters:
 - 1) Pushbuttons: START-STOP.
 - 2) Selector Switches: HAND/OFF/AUTO.
 - 3) Indicating Lights: Red ON, Green OFF.

2.3 OVERCURRENT PROTECTIVE DEVICES

- A. Overload Relays:
 - 1. Provide overload relays and, where applicable, associated current elements/heaters, selected according to actual installed motor nameplate data, in accordance with manufacturer's recommendations and NFPA 70; include consideration for motor service factor and ambient temperature correction, where applicable.
 - 2. Inverse-Time Trip Class Rating: Class 20 unless otherwise indicated or required.
 - 3. Trip-free operation.
 - 4. Visible trip indication.
 - 5. Resettable.
 - a. Employ manual reset unless otherwise indicated.
 - b. Do not employ automatic reset with two-wire control.
 - 6. Bimetallic Thermal Overload Relays:
 - a. Interchangeable current elements/heaters.
 - b. Adjustable trip; plus/minus 10 percent of nominal, minimum.
 - c. Trip test function.
- B. Circuit Breakers:

- 1. Interrupting Capacity (not applicable to motor circuit protectors):
 - a. Provide circuit breakers with interrupting capacity as required to provide the short circuit current rating indicated, but not less than specified minimum requirements.
 - b. Fully Rated Systems: Provide circuit breakers with interrupting capacity not less than the short circuit current rating indicated.
- 2. Molded Case Circuit Breakers:
 - a. Description: Quick-make, quick-break, over center toggle, trip-free, trip-indicating circuit breakers; listed and labeled as complying with UL 489; ratings, configurations, and features as indicated on the drawings.
- 2.4 MOTOR CONTROL ACCESSORIES
 - A. Auxiliary Contacts:
 - 1. Comply with NEMA ICS 5.
 - 2. Provide number and type of contacts indicated or required to perform necessary functions, including holding (seal-in) circuit and interlocking, plus one normally open (NO) and one normally closed (NC) spare contact for each magnetic motor starter, minimum.
 - B. Pilot Devices:
 - 1. Comply with NEMA ICS 5; heavy-duty type.
 - 2. Pushbuttons: Unless otherwise indicated, provide momentary, non-illuminated type with flush button operator; normally open or normally closed as indicated or as required.
 - Selector Switches: Unless otherwise indicated, provide maintained, non-illuminated type with knob operator; number of switch positions as indicated or as required.
 - 4. Indicating Lights: Push-to-test type unless otherwise indicated.
 - 5. Provide LED lamp source for indicating lights and illuminated devices.

- C. Control Power Transformers:
 - Size to accommodate burden of contactor coil(s) and 1. all connected auxiliary devices, plus 50 VA spare capacity.
 - 2. Include primary and secondary fuses.
- D. Control Terminal Blocks: Include 25 percent spare terminals.

PART 3 - PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify that field measurements are as shown on the drawings.
- B. Verify that ratings of enclosed motor controllers are consistent with the indicated requirements.
- C. Verify that mounting surfaces are ready to receive enclosed motor controllers.
- D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION

- A. Install products in accordance with manufacturer's instructions.
- B. Install motor controllers in accordance with NECA 1 (general workmanship).
- C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
- D. Provide required support and attachment components in accordance with Section 26 0529.
- E. Install enclosed motor controllers plumb and level.
- F. Provide grounding and bonding in accordance with Section 26 0526.

- G. Install all field-installed devices, components, and accessories.
- H. Where accessories are not self-powered, provide control power source as indicated or as required to complete installation.
- I. Set field-adjustable motor controllers and associated components according to installed motor requirements, in accordance with manufacturer's recommendations and NFPA 70.
- 3.3 FIELD QUALITY CONTROL
 - A. A. Inspect and test in accordance with NETA ATS, except Section 4.
 - B. B. Motor Starters: Perform inspections and tests listed in NETA ATS, Section 7.16.1.1. Tests listed as optional are not required.
 - C. C. Correct deficiencies and replace damaged or defective enclosed motor controllers or associated components.
 - D. D. Submit detailed reports indicating inspection and testing results and corrective actions taken.

3.4 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

3.5 CLEANING

- A. Clean dirt and debris from motor controller enclosures and components according to manufacturer's instructions.
- B. Repair scratched or marred exterior surfaces to match original factory finish.

3.6 PROTECTION

A. Protect installed enclosed motor controllers from subsequent construction operations.

END OF SECTION

SECTION 26 2923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. A. Variable frequency controllers to be furnished by Mechanical Division 23 and installed, wired and tested by Electrical Division 26.
- 1.2 RELATED REQUIREMENTS
 - A. Section 26 0553 Identification for Electrical Systems: Identification products and requirements.
- 1.3 1.03 REFERENCE STANDARDS
 - A. NEMA ICS 7.1 Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable Speed Drive Systems; 2006.
 - B. NETA ATS Acceptance Testing Specifications for Electrical Power Equipment and Systems; 2013.
 - C. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.4 1.04 SUBMITTALS

- A. Product Data: Provide catalog sheets showing voltage, controller size, ratings and size of switching and overcurrent protective devices, short circuit ratings, dimensions, and enclosure details.
- B. Shop Drawings: Indicate front and side views of enclosures with overall dimensions and weights shown; conduit entrance locations and requirements; and nameplate legends.
- C. Test Reports: Indicate field test and inspection procedures and test results.
- D. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by testing agency. Include

instructions for storage, handling, protection, examination, preparation, and installation of product.

- E. Manufacturer's Field Reports: Indicate start-up inspection findings.
- F. Operation Data: NEMA ICS 7.1. Include instructions for starting and operating controllers, and describe operating limits that may result in hazardous or unsafe conditions.
- G. Maintenance Data: NEMA ICS 7.1. Include routine preventive maintenance schedule.
- H. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. Extra Air Filters: Two of each type.

1.5 QUALITY ASSURANCE

- A. Conform to requirements of NFPA 70.
- B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum 10 years documented experience and with service facilities within 100 miles (160 km) of Project.
- C. Products: Listed, classified, and labeled as suitable for the purpose intended.
- D. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.
- 1.6 DELIVERY, STORAGE, AND HANDLING
 - A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
 - B. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to components, enclosure, and finish.

PART 2 - PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Basis of Design: ABB; Model ACH 550, HVAC equipment drive suitable for operation of the specified motor.
- B. Drive shall be furnished by the HVAC equipment supplier. HVAC equipment supplier shall be responsible for the compatibility of the motor and drive for the intended equipment operation.

2.2 DESCRIPTION

- A. Variable Frequency Controllers: Enclosed controllers suitable for operating the indicated loads, in conformance with requirements of NEMA ICS 7.
- 2.3 SOURCE QUALITY CONTROL
 - A. Shop inspect and perform standard productions tests for each controller.
- PART 3 PART 3 EXECUTION
- 3.1 EXAMINATION
 - A. Verify that surface is suitable for controller installation.
 - B. Do not install controller until building environment can be maintained within the service conditions required by the manufacturer.

3.2 INSTALLATION

- A. Install in accordance with NEMA ICS 7.1 and manufacturer's instructions.
- B. Tighten accessible connections and mechanical fasteners after placing controller.
- C. Provide fuses in fusible switches; refer to Section 26 2813 for product requirements.

- D. Select and install overload heater elements in motor controllers to match installed motor characteristics.
- E. Identify variable frequency controllers in accordance with Section 26 0553.
- 3.3 FIELD QUALITY CONTROL
 - A. Inspect and test in accordance with NETA ATS, except Section 4.
 - B. Perform inspections and tests listed in NETA ATS, Section 7.17.

3.4 ADJUSTING

- A. Make final adjustments to installed controller to assure proper operation of load system. Obtain performance requirements from installer of driven loads.
- 3.5 3.05 CLOSEOUT ACTIVITIES
 - A. Demonstrate operation of controllers in automatic and manual modes.

END OF SECTION